57 research outputs found

    Metallothionein as an indicator of water quality: assessment of the bioavailability of cadmium, copper, mercury and zinc in aquatic animals at the cellular level

    Get PDF
    The study of metallothioneins (MTs) has greatly improved our understanding of body burdens, metal storage and detoxification in aquatic organisms subjected to contamination by the toxic heavy metals, Cd, Cu, Hg and Zn. These studies have shown that in certain organisms MT status can be used to assess impact of these metals at the cellular level and, whilst validation is currently limited to a few examples, this stress response may be linked to higher levels of organisation, thus indicating its potential for environmental quality assessment. Molluscs, such as Mytilus spp., and several commonly occurring teleost species, are the most promising of the indicator species tested. Natural variability of MT levels caused by the organism's size, condition, age, position in the sexual cycle, temperature and various stressors, can lead to difficulties in interpretation of field data as a definitive response-indicator of metal contamination unless a critical appraisal of these variables is available. From laboratory and field studies these data are almost complete for teleost fish. Whilst for molluscs much of this information is lacking, when suitable controls are utilised and MT measurements are combined with observations of metal partitioning, current studies indicate that they are nevertheless a powerful tool in the interpretation of impact, and may prove useful in water quality assessment

    Bioaccumulation surveillance in Milford Haven Waterway

    Get PDF
    Biomonitoring of contaminants (metals, organotins, PAHs, PCBs) was carried out along the Milford Haven Waterway (MHW) and at a reference site in the Tywi Estuary during 2007-2008. The species used as bioindicators encompass a variety of uptake routes - Fucus vesiculosus (dissolved contaminants); Littorina littorea (grazer); Mytilus edulis and Cerastoderma edule (suspension feeders); and Nereis diversicolor (omnivore which often reflects contaminants in sediment). Differences in feeding strategy and habitat preference have subtle implications for bioaccumulation trends though, with few exceptions, contaminant body burdens in Milford Haven (MH) were higher than those at the Tywi reference site, reflecting inputs. Elevated concentrations of metals were occasionally observed at individual MH sites, whilst As and Se (molluscs and seaweed) were, for much of MHW, consistently at the higher end of the UK range. However, for the majority of metals, distributions in MH biota were not exceptional by UK standards. Several metal-species combinations indicated increases in bioavailability at upstream sites, which may reflect the influence of geogenic or other land-based sources – perhaps enhanced by lower salinity (greater proportions of more bioavailable forms). TBT levels in MH mussels were below OSPAR toxicity thresholds and in the Tywi were close to zero. Phenyltins were not accumulated appreciably in Mytilus, whereas some Nereis populations may have been subjected to localized (historical) sources. PAHs in Nereis tended to be evenly distributed across most sites, but with somewhat higher values at Dale for acenaphthene, fluoranthene, pyrene, benzo(a)anthracene and chrysene; naphthalenes tended to be enriched further upstream in the mid-upper Haven (a pattern seen in mussels for most PAHs). Whilst concentrations in MH mussels were mostly above reference site and OSPAR backgrounds, it is unlikely that ecotoxicological guidelines would be exceeded. PCBs in mussels were between upper and lower OSPAR guidelines and were unusual in their distribution in that highest levels occurred at the mouth of MH. Condition indices (CI) of bivalves (mussels and cockles) were highest at the Tywi reference site and at the seaward end of MH, decreasing upstream along the Waterway. There were a number of significant (negative) relationships between CI and body burdens and multivariate analysis indicated that a combination of contaminants could influence the pattern in condition (and sub-lethal responses such as MT and TOSC) across sites. Cause and effect needs to be tested more rigorously in future assessments

    Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays

    Full text link
    Average charged multiplicities have been measured separately in bb, cc and light quark (u,d,su,d,s) events from Z0Z^0 decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of bb and light quark events, and reconstructed charmed mesons were used to select cc quark events. We measured the charged multiplicities: nˉuds=20.21±0.10(stat.)±0.22(syst.)\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.}), nˉc=21.28±0.46(stat.)−0.36+0.41(syst.)\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ^{+0.41}_{-0.36}(\rm{syst.}) nˉb=23.14±0.10(stat.)−0.37+0.38(syst.)\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ^{+0.38}_{-0.37}(\rm{syst.}), from which we derived the differences between the total average charged multiplicities of cc or bb quark events and light quark events: Δnˉc=1.07±0.47(stat.)−0.30+0.36(syst.)\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})^{+0.36}_{-0.30}(\rm{syst.}) and Δnˉb=2.93±0.14(stat.)−0.29+0.30(syst.)\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})^{+0.30}_{-0.29}(\rm{syst.}). We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters

    Complexity of spatial and temporal trends in metal concentrations in macroinvertebrate biomonitor species in the Severn Estuary and Bristol Channel

    Get PDF
    Cadmium, chromium, copper, nickel, lead and zinc concentrations in the bivalve mollusc Macoma balthica and the polychaete annelids Hediste diversicolor and Arenicola marina were measured, during winter and summer, at sites throughout the Severn Estuary and Bristol Channel. The mean concentration of each metal in A. marina was greater in the lower Severn Estuary than in the far less contaminated outer Bristol Channel and the concentration of a given metal, e.g. Cr, in a species occasionally peaked at a site, reflecting local metal contamination. The concentrations of each metal in each of these biomonitor species almost invariably differed significantly among sites and often seasons and there were sometimes interactions between site and season. This indicates that the various factors that determine the concentration of a metal in a species operate in a complex manner and that their individual effects can vary among sites and/or seasons. The rank order of each metal concentration in each species at a site within the estuary frequently did not match the sequence for the concentration of that metal measured in the sediment at that site at the same time. This lack of correspondence is likely to be due, at least in part, to one or both of the following: (1) variations in the bioavailability of certain metals among sites due to differences in such features as the metal-binding properties of the sediments; (2) the effects of the constant transport and redistribution of the sediments and thus also of their associated trace metals by the very strong tidal action that characterizes the Severn Estuary. This would mean that single time measurements do not accurately reflect the overall trace metal environment to which the biomonitor organism had been exposed in the weeks/months prior to sampling. Marked differences in the concentrations of certain metals, e.g. Cu and Zn, in co-occurring biomarker species could frequently be related to differences between the ability of these species to regulate certain metals. Non-metric multi-dimensional scaling ordination and associated tests emphasize that the relationships between the concentrations of the various metals differed markedly among species and between sites and seasons in individual species and elucidated which metals contributed most to those differences. If the proposed scheme for harnessing tidal power in the Severn Estuary proceeds, the data in this paper provide a baseline for assessing the impact of such major changes on the bioavailability of trace metals in this estuary. This information will also be invaluable for predicting the changes likely to occur in other estuaries that become subjected to major structural changes

    Routes of TBT uptake in the clam Ruditapes decussatus. II. Food as vector of TBT uptake

    No full text
    Marine bivalves are exposed to contaminants via the aqueous phase, sediments and food. Nevertheless, the relative importance of these phases as uptake vectors of contaminants in these marine organisms has not been well studied. Phytoplankton concentrate contaminants from seawater and given their position at the base of most marine food webs, these algal cells may play critical roles in the transfer of contaminants to higher trophic levels. This study assesses the relative importance of microalgae as a vector of tributylin (TBT) uptake in the infaunal, suspension-feeding bivalve Ruditapes decussatus. Accumulation of TBT via the algal diet was determined by experimental exposure of R. decussatus to 14C-TBT labelled phytoplankton Isochrisis galbana, for a period up to 60 days. The digestive tract of these clams initially accumulates TBT preferentially from food. After a few weeks of exposure, internal remobilization results in a more widespread partitioning of TBT amongst tissues.PRAXIS/BD/1424/91-IGinfo:eu-repo/semantics/publishedVersio

    Partitioning, bioavailability and effects of oestrogens and xenoestrogens in the aquatic environment

    Get PDF
    This review provides insights into the distribution and impact of oestrogens and xeno-oestrogens in the aquatic environment and highlights some significant knowledge gaps in our understanding of endocrine disrupting chemicals. Key areas of uncertainty in the assessment of risk include the role of estuarine sediments in mediating the fate and bioavailability of environmental (xeno)oestrogens (notably their transfer to benthic organisms and estuarine food chains), together with evidence for endocrine disruption in invertebrate populations. Emphasis is placed on using published information to interpret the behaviour and effects of a small number of ‘model compounds’ thought to contribute to oestrogenic effects in nature; namely, the natural steroid 17β-oestradiol (E2) and the synthetic hormone 17α-ethinyloestradiol (EE2), together with the alkylphenols octyl- and nonyl-phenol (OP, NP) as oestrogen mimics. Individual sections of the review are devoted to sources and concentrations of (xeno)oestrogens in waterways, sediment partitioning and persistence, bioaccumulation rates and routes, assays and biomarkers of oestrogenicity, and, finally, a synopsis of reproductive and ecological effects in aquatic species

    Intersex in the clam Scrobicularia plana: a sign of endocrine disruption in estuaries?

    Get PDF
    The phenomenon of endocrine disruption is currently a source of growing concern. Feminization of male fish in UK rivers has been shown to occur extensively and has been linked with exposure to endocrine-disrupting compounds present in the environment. Much less is known of the extent and scale of endocrine disruption in estuarine and marine ecosystems, particularly in invertebrates. We present evidence that intersex, in the form of ovotestis, is occurring in the common estuarine bivalve Scrobicularia plana, which is considered to be inherently gonochoristic. We report varying degrees in the severity of ovotestis in male S. plana, and have adopted and developed a grading method to assess the extent of this intersex condition. These findings indicate that S. plana offers potential for widespread screening and investigation of endocrine disruption, helping to focus remediatory strategy

    Effect of temperature and size on metallothionein synthesis in the gill of Mytilus galloprovincialis exposed to cadmium

    No full text
    Although the degree of metal contamination is expected to be a primary determinant of metallothionein (MT) induction in marine mussels, at least at polluted sites, variability caused by temperature, and biotic factors such as size, may need to be considered when interpreting field data. To test the effects of these variables, mussels, Mytilus galloprovincialis, of different sizes (small: 3.5+/-0.5 cm and large: 5.2+/-0.7 cm) were exposed to Cd (100 mug 1(-1)) at different water temperatures (5, 18 and 25 degreesC) for 34 days. Resultant Cd and MT concentrations in gills were shown to be size dependent and increased significantly with temperature. At the highest temperature tested (25 degreesC) there appears to be a disproportionate effect on Cd accumulation, which raises MT synthesis to exceptionally high levels. The effect of size on MT concentrations was also temperature-dependent: at 18 and 25 degreesC, large mussels exhibited higher MT levels than smaller individuals, whilst at 5 degreesC there were no significant differences between contaminated and control mussels, in either size-group, as a result of the reduced level of MT production at this temperature. When considering the use of MT levels in mussels as a biochemical indicator of metal contamination, the potential influence of factors such as size and temperature on MT-metal relationships needs to be considered. Samples should be of uniform size as far as possible, and collection should be limited to a fixed season (avoiding climatic extremes) to ensure that the effects of these factors on baseline levels of MT is minimised.info:eu-repo/semantics/publishedVersio
    • …
    corecore